

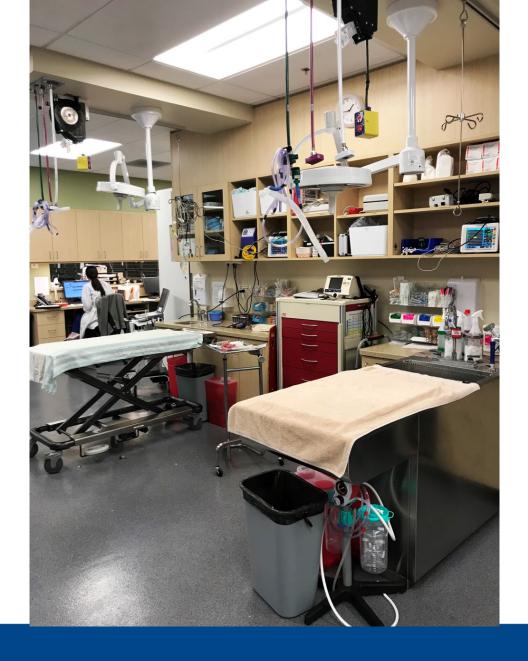
J. Michael Walters, DVM, MS, DACVECC Medical Director VCA West Coast Specialty and Emergency Animal Hospital

OVERVIEW

- Triage and assessment
- Oxygen therapy
- Initial stabilization
- Causes of respiratory distress
 - Upper Airway
 - Lower Airway
 - Parenchymal
 - Pleural space
- Diagnostics and treatment

Triage

TRIAGE


- Be prepared
- Triage
 - To 'sort'
 - Prioritize patients
 - Prioritize problems within the patient
- Horizontal resuscitation
 - Spread effort across a number of patients
- Vertical resuscitation
 - Step by step process within patient care

BEING PREPARED

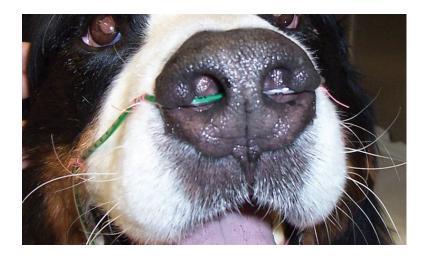
- Adequate staffing
- Crash cart/box
 - Well stocked
 - Essentials
- Deliver O₂
- Ready area
- Able to perform routine diagnostics
- Being prepared for the worst case scenario

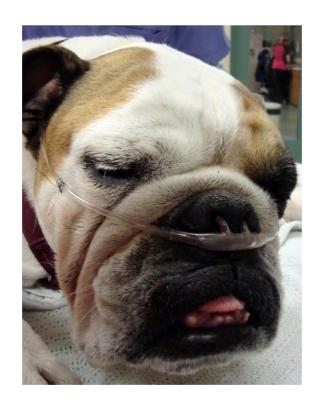
INITIAL ASSESSMENT

- Primary survey
 - Airway
 - Breathing
 - Circulation
 - Disability
 - External Assessment
- Concurrent treatment
 - $-O_2$
 - Analgesia/sedation
 - Opioids
 - +/- Benzodiazepines

OXYGEN THERAPY

- Face mask
- Blow-by
- O_2 cages
 - High FiO₂
 - **-** 40-60%
- Oxygen hood
- Emergency intubation
 - Rapid sequence induction
 - $-100\% O_2$
- Emergency tracheostomy





Comparison of high flow nasal cannula oxygen administration to traditional nasal cannula oxygen therapy in healthy dogs

Tiffany A. Jagodich DVM, DVSc, DACVECC Alexa M.E. Bersenas DVM, MSc, DACVECC Shane W. Bateman DVM, DVSc, DACVECC Carolyn L. Kerr DVM, DVSc, PhD. DACVAA

High-flow nasal canula

Pros:

- Comfortable humidified, warmed air similar to physiologic conditions in naso/oropharynx
- Can deliver precise, set FiO2
- Extremely high flow rates provides low amounts of PEEP
- Leaves mouth free for talking/eating/coughing

Cons:

 Not immediately available, sometimes limited supply

Evaluation of oxygen administration with a high-flow nasal cannula to clinically normal dogs

Jennifer L. Daly DVM

Christine L. Guenther DVM

Jamie M. Haggerty BA lain Keir BVMS

Received April 29, 2016. Accepted August 9, 2016.

From the Pittsburgh Veterinary Emergency and Specialty Center, 807 Camp Horne Rd, Pittsburgh, PA 15237 (Daly, Guenther, Haggerty); the Center for

OBJECTIVE

To evaluate the safety and efficacy of oxygen administration by use of a highflow nasal cannula (HFNC) in sedated clinically normal dogs.

ΔΝΙΜΔΙ 9

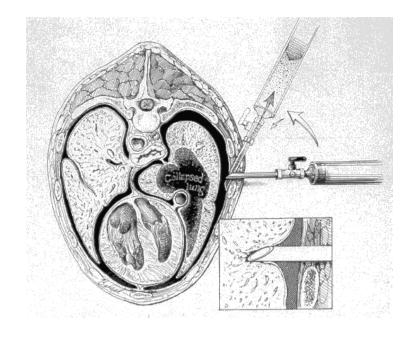
6 healthy adult dogs undergoing routine dental prophylaxis.

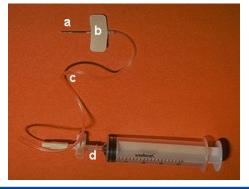
PROCEDURE

Dogs were sedated with butorphanol tartrate and dexmedetomidine. An esophageal balloon catheter was inserted into the esophagus, a double-pronged nasal cannula was inserted into the nares, and a catheter was inserted into the dorsal pedal artery. Dogs were positioned in right lateral

EXTERNAL COOLING

- Hyperthermia
 - Upper airway obstruction
 - Increased work of breathing
 - Inability to thermoregulate
 - Ineffective ability to blow off heat
- Cooling
 - Room temp IVF
 - Cover patient with wet towels
 - Fan
 - Stop when temperature reaches 103F/39C





THORACOCENTESIS

Common with pleural space disease

SIGNALMENT

- Upper airway obstruction
 - Laryngeal paralysis
 - Large breed dogs
 - Brachycephalic syndrome
 - Bulldogs
 - Pug
- Cardiogenic pulmonary edema
 - Small breed dogs
- Lower airway obstruction
 - Asthma
 - Cats

HISTORY

- HBC?
 - Blunt trauma
 - Contusions
 - Pneumothorax
 - Diaphragmatic hernia
- Cough?
 - Cats?
 - Asthma
 - Dogs?
 - Tracheobronchial disease
 - Pulmonary edema
 - Pulmonary parenchymal disease

PHYSICAL EXAM

- Distant exam
 - Breathing pattern
 - Noise
 - Abdominal distension
 - Possible underlying heart disease?
 - Possible pulmonary edema

- Lung auscultation
 - Crackles and wheezes
 - Lower airway and parenchymal disease
 - Decreased lung sounds
 with restrictive pattern
 - Pleural space disease
- Cardiac auscultation
 - Murmurs, gallops, arrhythmias

Respiratory Pattern Recognition

Disease category	Examples	Breathing Patterns
Upper airway	Brachycephalic syndrome Laryngeal paralysis	Inspiratory stridor Ext. audible noise
Lower airway	Asthma	Expiratory distress Wheezes
Parenchymal disease	Pneumonia Pulmonary edema Pulmonary contusions	Inconsistent; rapid shallow, inspiratory/expiratory patterns
Vascular	Pulmonary embolism	Nonspecific
Pleural space disease	Pneumothorax Pleural effusion	Inspiratory distress; rapid shallow. Paradoxic motion. Reduced lung sounds
Flail chest		Focal, paradoxic movement
Abdominal distension	Ascites Organomegly	Inspiratory distress

Flail Chest

Feline bronchiolitis/asthma

DIAGNOSTIC TESTING

- Limited at first
 - Stabilize
- **Brief PE**
- Use your respiratory patterns
 - Localize disease
- Prioritize routine diagnostics
 - Blood analysis
 - Imaging
 - Radiographs
 - TFAST
 - Respiratory fluid analysis
 - Pleural space disease

- Airway exam
 - Upper airway
 - Bronchoscopy
- Drug trials
 - Bronchodilators
 - Corticosteroids
 - Diuretic
 - Sedation
 - Dexaterbutalasatrol??

TTW

SEDATION - DOGS

- Butorphanol
 - 0.1-0.4 mg/kg IM/IV; q1-4h
 PRN
- Acepromazine
 - 0.005-0.05 mg/kg IM/IV; q1-4hPRN
- Dexmetomidine
 - 2-5 mcg/kg IV
- Midazolam
 - 0.1-0.2 mg/kg, IV

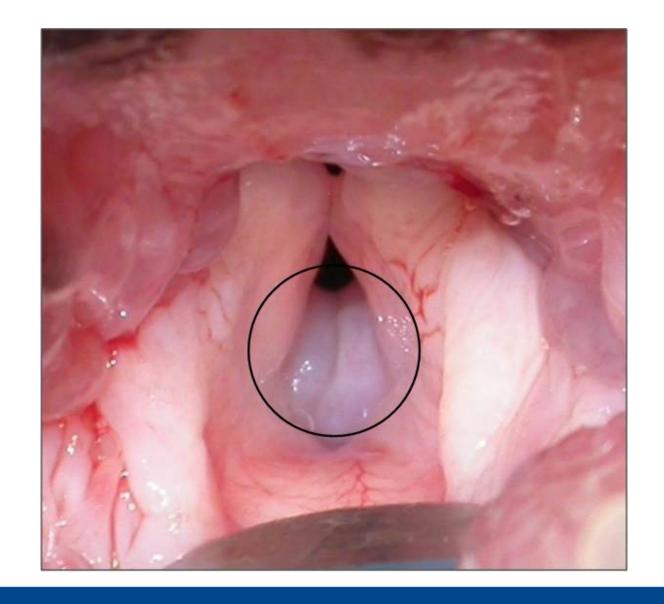
- Butorphanol
 - Safe
 - Good sedation; <u>POOR</u> analgesia
- Acepromazine
 - Hypotension
 - Long duration
- Dexmetomidine
 - Reversible
 - Bradycardia
 - Hypotension
- Midazolam
 - CV sparring effect
 - Not good solo agent

SEDATION - CATS

- Methadone + Ace
 - 0.1-0.25 mg/kg, IM, IV (slow)
 - Acepromazine 0.01-0.02 mg/kg
- Hydromorphone + Ace or Hydromorphone + Midazolam
 - Hydro 0.05-0.1 mg/kg IM/IV
 - Midazolam 0.1-0.2 mg/kgIM/IV
- +/- Dexdomitor
 - 2-5 mcg/kg IM/IV

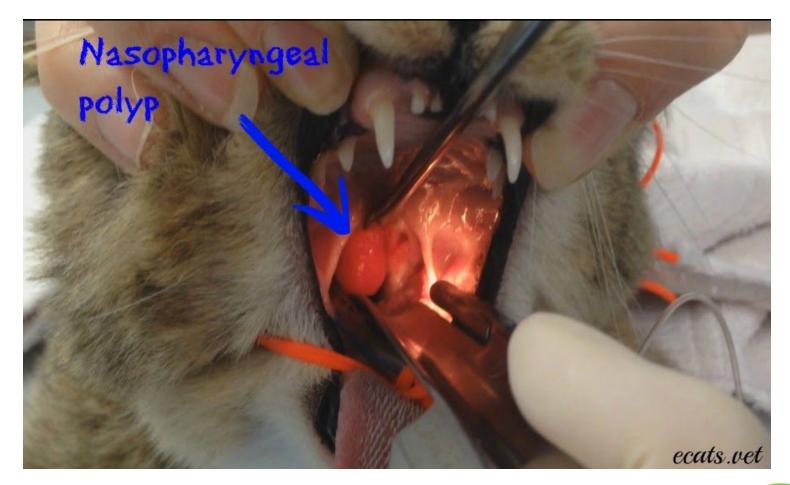
- Methadone/Hydromorphone
 - Pure mu
 - Reversible
 - Relative safety
- Midazolam
 - Safe overall
 - Synergistic
- Dexdomitor
 - Bradycardia
 - Hypotension
 - Reversible

Upper Airway Obstruction



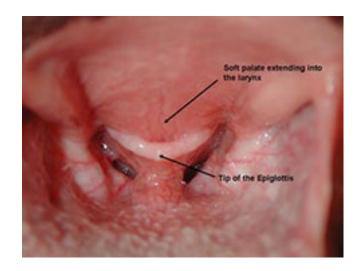
ETIOLOGY

- Mechanical/functional obstruction
 - Brachycephalic syndrome
- Nasopharyngeal
 - Polyps, masses and foreign bodies
- Severe head trauma
 - Bone fragments
 - Hemorrhage and swelling
- Laryngeal disease
 - Lar par
 - Laryngeal collapse
 - Mass/tumor
 - Laryngeal inflammation



ETIOLOGY

- Brachycephalic syndrome
 - Primary defects
 - Stenotic nares
 - Elongated soft palate
 - Redundant pharyngeal folds
 - Hypoplastic trachea
 - Bulldogs


- Secondary defects
 - Laryngeal edema
 - Everted laryngeal saccules
 - Laryngeal collapse
 - GI signs
 - Vomiting,esophagitis, GERD

CLINICAL SIGNS

- Inspiratory distress
- Audible noise
 - Stridor
 - Sonorous
- Often have a cough

INITIAL STABILIZATION

- O₂
- Sedation
- Cooling
 - If needed
- Corticosteroids
 - Dex SP
 - 0.15 mg/kg IV
 - Maybe repeated
 - Don't go crazy with steroids

DIAGNOSTIC APPROACH

- Airway exam
 - Preoxygenate
 - Sedated/anesthetic exam
 - Laryngoscopic exam
 - Tracheobronchoscopy

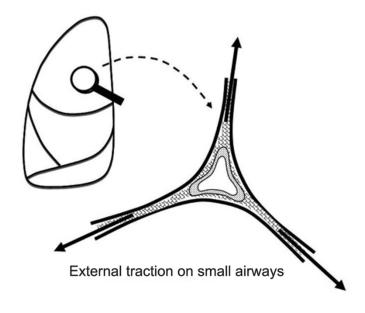
- Evaluate laryngeal function
 - Sedated exam
 - Avoid over- sedation
 - May need doxapram to stimulate laryngeal motion
 - Abduction on inspiration
 - Increasing aperture of the rima glottis
 - Distinguish paradoxic motion

DIAGNOSTIC APPROACH

- Cervical and thoracic imaging
 - 3 view chest radiographs
 - -+/- CT
- Fluoroscopy
 - Dynamic changes
 - 3rd wave diagnostic

MANAGEMENT

- Definitive management variable
- Depends on severity and diagnostic findings
- Medical vs surgical management
 - For another time to discuss


Lower Airway Obstruction

ETIOLOGY

- Narrowed bronchial lumen
 - Inflammation
 - Edema
 - Hyperemia
 - Bronchospasm
 - Mucus plug
 - Acute anaphylaxis
- Lumen closes early during expiration
 - Expiratory distress most common
- Dynamic traction opens airway during inspiration

SPECIFIC EXAMPLES

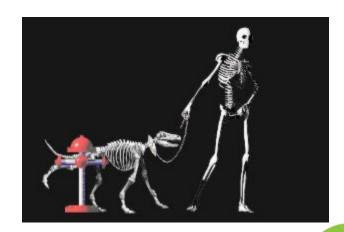
- Asthma classic
 - Eosinophilic inflammation
 - Reversible bronchoconstriction
 - Remodeling
- Chronic bronchitis
 - In cats
 - Neutrophilic inflammation
 - Eosinophilic/neutrophilic
 - In dogs
 - Bronchomalacia
 - End stage chronic bronchitis

CLINICAL SIGNS

- Expiratory distress
 - Expiratory grunt
- Audible sounds
 - Wheezing on auscultation
 - Can be externally audible

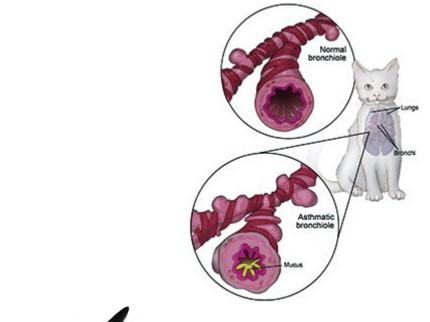
INITIAL STABILIZATION

- O₂
- Bronchodilator trial
 - Inhaled albuterol
 - 1-2 puffs via MDI with a spacer
 - Nebulization
 - Single dose terbutaline
 - 0.01 mg/kg IM/SC
 - Rapid improvement
 - 10-15 min
 - Compare pre and post TX HR
 - Increased rate with activity



DIAGNOSTIC APPROACH

- Thoracic radiographs
 - Bronchial/bronchointerstitial pattern
 - Air trapping in cats with asthma
 - Flattened diaphragm



DIAGNOSTIC APPROACH

- Lower airway cytology
 - BAL, TTW
 - Eosinophilic inflammation > 17%; cats
 - Can be useful to confirm in cases of feline asthma
 - Often times not needed
 - Neutrophilic inflammation
 - Chronic canine bronchitis
- HW testing
 - Ag and Ab in cats
- Echocardiogram

- Bronchodilators
 - Inhaled
 - Systemic
- Corticosteroids
 - Inhaled
 - Systemic
- Deworming
 - In endemic areas

Pulmonary Parenchymal Disease

ETIOLOGY

- Terminal bronchioles
- Interstitium
- Alveoli
- Vasculature

Classification	Examples
Pneumonia	InfectiousAspiration
Pulmonary Edema	CardiogenicNoncardiogenic
Interstitial lung disease	 Idiopathic pulmonary fibrosis Eosinophilic bronchopneumopathy HW disease
Pulmonary Neoplasia	PrimarySecondary
Traumatic pulmonary injury	Pulmonary contusions

CLINICAL SIGNS

- Loud respiratory sounds on auscultation
 - Harsh lungs
 - Wheezes
 - Crackles
- Presence of a murmur?
- Fever
 - Reported in 12.5 % of dogs and 25% of cats with pneumonia

INITIAL STABILIZATION

- Diuretic?
 - If high index of suspicion of cardiogenic edema
 - Furosemide
 - 2-4 mg/kg IV/IM
- **Antibiotics**
 - High index of suspicion of bacterial pneumonia
 - ASAP*
 - *After airway sampling if this is planned

DIAGNOSTIC APPROACH

- Thoracic radiographs
- Echocardiography
 - Especially when the clinical picture isn't clear
- NT-pBNP
 - Peptide associated with atrial stretch

Positive NTproBNP→ likely cardiac related. Needs ECG and echocardiogram

Negative NTproBNP + no auscultable arrhythmia→likely not cardiac related BUT may have intermittent arrhythmia; consider Holter or implantable monitor (cardio consult)

- Airway cytology
 - TTW/ET wash/BAL
- Thoracic CT
- Lung Biopsy
 - Solitary lung masses
- Thoracoscopic surgery

- Depends on underlying disease
- Judicious fluids
 - In some cases
 - CONTRAINDICATED IN HEART FAILURE

- Cardiogenic edema
 - -0_{2}
 - Diuretic (furosemide, toresmide, other)
 - Goal: 5-8% body mass loss over 24 hrs
 - Wt frequently
 - Inodilators (pimobenden)
 - Positive inotropes (dobutamine, pimobenden)
 - ACE_i (enalapril, benazepril)

- Infectious pneumonia
 - $-O_2$
 - Antimicrobials
 - Broad spectrum initial
 - Refined with C&S results
 - BAL/TTW/ET wash/cytology
 - Nebulization/coupage
 - Saline
 - Saline + albuterol (??)

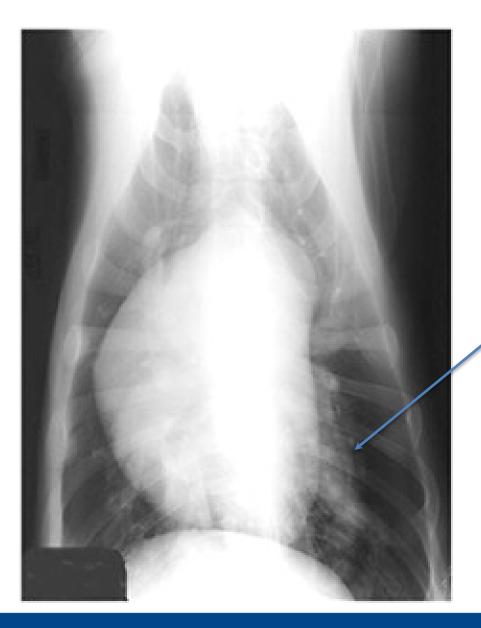
- Interstitial lung disease
 - Challenging cases
 - May require steroids
- Pulmonary neoplasia
 - Management depends on type
 - Primary
 - Metastatic
 - Surgery
 - Chemotherapy
 - Radiation

Pulmonary Embolism

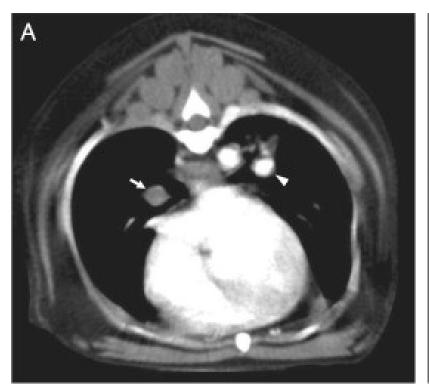
ETIOLOGY

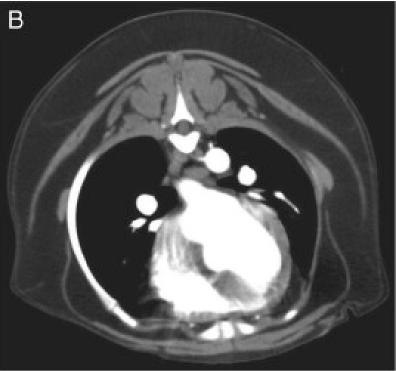
- Causes like any cause of TE
 - Virchow's triad
 - Turbulent blood flow or stasis
 - Endothelial injury
 - Hypercoagulability
- Important to treat aggressively
 - Despite not knowing the underlying cause
 - Prevent further TE events

Diseases/conditions that predispose to hypercoagulable state


Disease	Conditions
Cardiac disease	Exogenous corticosteroids
DIC	Indwelling IV catheters
HW disease	
HAC	
IMHA	
Neoplasia	
PLE	
Sepsis	

CLINICAL SIGNS & DIAGNOSTIC APPROACH


- Thoracic radiographs
 - May be normal
- Respiratory distress out of proportion with radiographic changes
 - Or lack of changes!
 - Focal hypolucency or vessel truncation
 - MPA dilation or R heart enlargement
 - Pulmonary hypertension
- Echocardiogram useful
- CT angiography
- V/Q scan
 - Less common



PA truncation

CT pulmonary angiography (CTPA) from two dogs with immune-mediated haemolytic anaemia. (A) Positive CTPA study diagnostic for PTE. Intraluminal filling defects can be clearly seen in both the right (arrow) and left (arrowhead) main pulmonary arteries. The filling defect in the left pulmonary artery is only partial at this level. (B) Negative CTPA study which rules out PTE in this patient. There is normal opacification of both left at right pulmonary arteries by contrast at this level. No aortic filling defects were noted in this study

Goggs, Robert & Chan, Daniel & Benigni, Livia & Hirst, C & Kellett-Gregory, Lindsay & Luis Fuentes, Virginia. (2014). Comparison of computed tomography pulmonary angiography and point-of-care tests for pulmonary thromboembolism diagnosis in dogs. The Journal of small animal practice. 55. 10.1111/jsap.12185.

STABILIZATION & MANAGEMENT

- O₂
- Address underlying disease
- Thrombolytic
 - Systemic vs catheter guided
- Anticoagulants
 - Unfractionated heparin
 - LMWH
 - Enoxaparin
 - Dalteparin
- Antiplatelet
 - Clopidogrel (Plavix)

American College of Veterinary Emergency and Critical Care (ACVECC) Consensus on the Rational Use of Antithrombotics in Veterinary Critical Care (CURATIVE) guidelines: Small animal

Conclusions: Overall, systematic evidence evaluations yielded more than 80 recommendations for the treatment of small animals with or at risk of developing thrombosis. Numerous significant knowledge gaps were highlighted by the evidence reviews undertaken, indicating the need for substantial additional research in this field.

Goggs, Robert & Blais, M-C & Brainard, Benjamin & Chan, Daniel & deLaforcade, Armelle & Rozanski, Elizabeth & Sharp, Claire. (2019). American College of Veterinary Emergency and Critical Care (ACVECC) Consensus on the Rational Use of Antithrombotics in Veterinary Critical Care (CURATIVE) guidelines: Small animal. Journal of Veterinary Emergency and Critical Care. 29. 12-36. 10.1111/vec.12801.

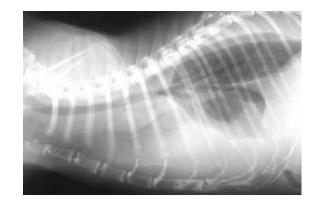
LOW MOLECULAR WEIGHT HEPARIN AND CLOPRIDOGREL

- Ideal antithrombotic therapy unknown
- Ok to combine clopidogrel and LMWH
 - Dalteparin (LMWH)
 - 150 U/kg q12h
 - Clopidogrel
 - 2 mg/kg q24h in dogs
 - 18.75 mg/day in cats
 - Monitor anti-Xa activity
 - Cornell

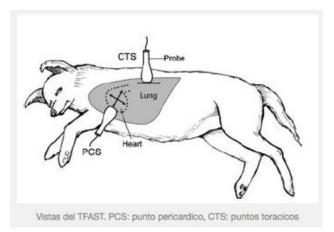
STABILIZATION & MANAGEMENT

- Thrombolytics
 - tPA
 - Many adverse effects when given systemically
 - IR catheterization and focal tPA
- Pulmonary hypertension
 - Sildenafil
 - Moderate to severe PH
 - Pimobenden
 - Inodilator

Pleural Space Disease

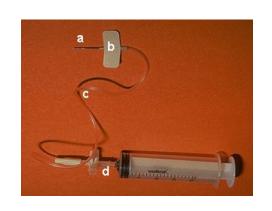


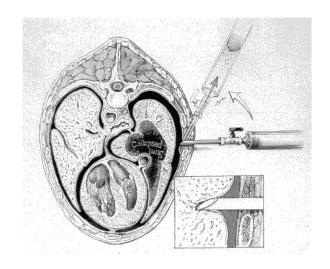
ETIOLOGY & CLINICAL SIGNS


- Abnormal accumulation of fluid, air, mass or organs
 - Impairs inspiration
- Inspiratory distress
- Rapid, shallow respiration
- Paradoxical breathing pattern
 - Chest falls during inspiration
 - Abdomen expands
- Decreased lung sounds

DIAGNOSTIC APPROACH

- TFAST
 - Thoracic focuses assessment with sonography in triage (trauma)
 - FASTvet.com
- Thoracic radiographs
- Echocardiogram
- CT
 - Bicav





DIAGNOSTIC APPROACH

- Thoracocentesis
 - Diagnostic and therapeutic
 - If no US, go with thoracocentesis
 - If US available
 - Ideally after TFAST and before XR

STABILIZATION AND MANAGEMENT

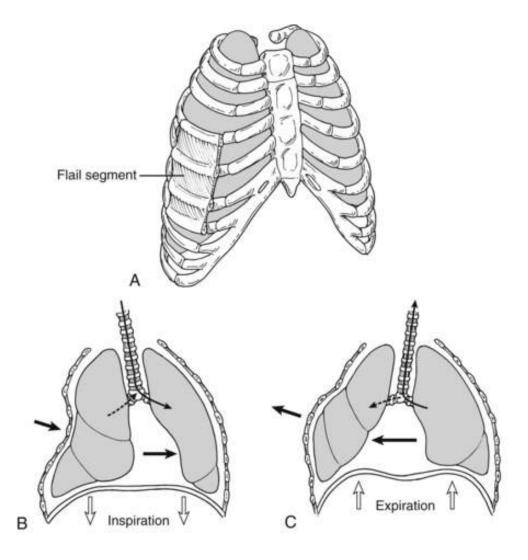
- Thoracocentesis
 - First and foremost
 - Save fluid
 - Cytology
 - C&S
- Address the underlying cause

Flail Chest

ETIOLOGY

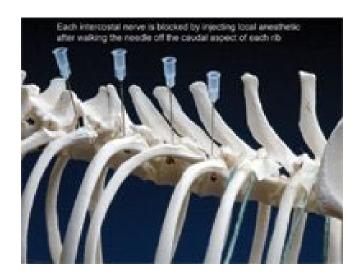
- Destabilization of the chest wall
- Multiple rib effected
- Free floating section of chest
 - 2 consecutive ribs
- Concurrent injuries
 - Pulmonary contusions
 - Pneumothorax
 - Other fractures

Flail Chest



CLINICAL SIGNS & DIAGNOSTIC APPROACH

- Visually obvious in most cases
 - Paradoxic chest wall motion
- Radiographs to confirm nature and extent
 - Assess pulmonary parenchymal injury
- Ribs fracture
 - Extremely PAINFUL
 - Pain management a MUST
 - Rapid, shallow respiratory pattern



STABILIZATION & MANAGEMENT

- O₂
- IV fluids
 - Careful
 - Pulmonary contusions
- Analgesia
 - Systemic analgesia
 - μ opioids preferred
 - NSAIDS
 - Only once hemodynamically stable
 - Local nerve blocks lidocaine/Marcaine
 - In cats, reduce the dose (no Marcaine in cats)

STABILIZATION & MANAGEMENT

- Bandaging
 - Helps to reduce motion
 - Not too tight
- Surgery
 - If penetrating wounds
 - Yes
 - Otherwise
 - May not be of benefit splint??
 - Use imaging to help guide SX

SUMMARY

- O₂
- Look at the patterns to identify anatomic location
- Systematic approach to diagnostic and therapy
- Minimize stress

Appropriate pain management

