ANTIMICROBIAL STEWARDSHIP: GETTING THE MOST OUT OF CULTURE AND SUSCEPTIBILITY TESTS

INSIGHTS FROM A MICROBIOLOGIST

Joe Rubin, DVM, PhD Associate Professor Department of Veterinary Microbiology University of Saskatchewan

DISCLOSURES

- Received research grants from
 - Zoetis
 - Elanco/Novartis
- I am a microbiologist and not a practitioner!

OBJECTIVES

- To give an overview of the scope of the problem of AMR
- To inspire the intent to change/improve/reevaluate prescribing practices
- To provide tools to use antimicrobials more effectively
 - Antimicrobial mechanisms of action and resistance
 - Introduction to intrinsic resistance
 - Overview of key emerging resistance in veterinary medicine

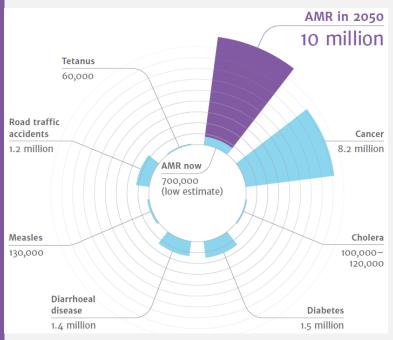
THE POST-ANTIBIOTIC ERA

IF NOT TACKLED, RISING AMR COULD HAVE A DEVASTATING IMPACT

00:00:03

By 2050, the death toll could be a staggering

one person every three seconds


if AMR is not tackled now.

ource: Review's own analysis

TACKLING DRUG-RESISTANT INFECTIONS GLOBALLY: FINAL REPORT AND RECOMMENDATIONS

THE REVIEW ON ANTIMICROBIAL RESISTANCE CHAIRED BY JIM O'NEILL

MAY 2016

Estimated Attributable Deaths in 2050

https://amr-review.org/

CURRENT THREATS

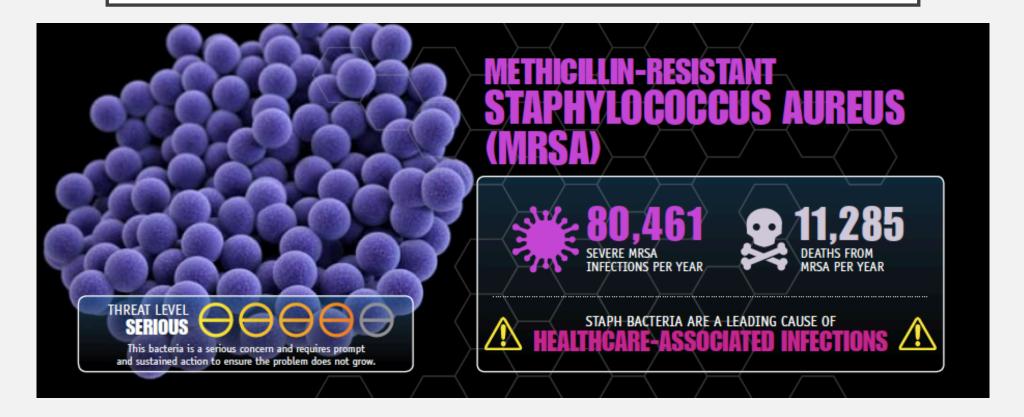
Urgent Threats Clostridium difficile Carbapenem-resistant Enterobacteriaceae (CRE) Drug-resistant Neisseria gonorrhoeae Serious Threats Multidrug-resistant Acinetobacter Drug-resistant Campylobacter Fluconazole-resistant Candida (a fungus) Extended spectrum β-lactamase producing Enterobacteriaceae (ESBLs) Vancomycin-resistant Enterococcus (VRE) Multidrug-resistant Non-typhoidal Salmonella Drug-resistant Shigella Methicillin-resistant Staphylococcus aureus (MRSA)

- Drug-resistant Streptococcus pneumoniae
- Drug-resistant tuberculosis

Concerning Threats

- Vancomycin-resistant Staphylococcus aureus (VRSA)
- Erythromycin-resistant Group A Streptococcus
- Clindamycin-resistant Group B Streptococcus

*bacteria and fungus included in this report



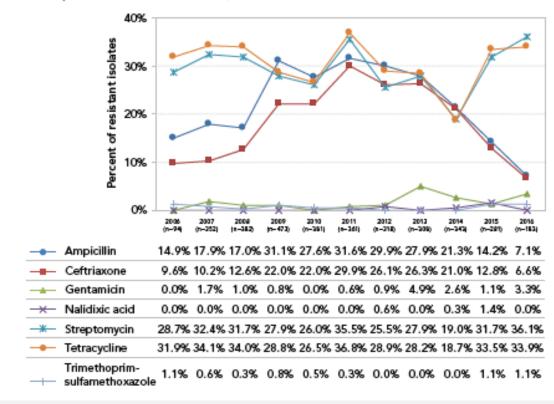
BROAD SPECTRUM B-LACTAMASES


ANTIBIOTIC RESISTANCE THREATS in the United States, 2013

METHICILLIN RESISTANT STAPH AUREUS

ANTIBIOTIC RESISTANCE THREATS in the United States, 2013

EMERGING RESISTANCE IN CANADA

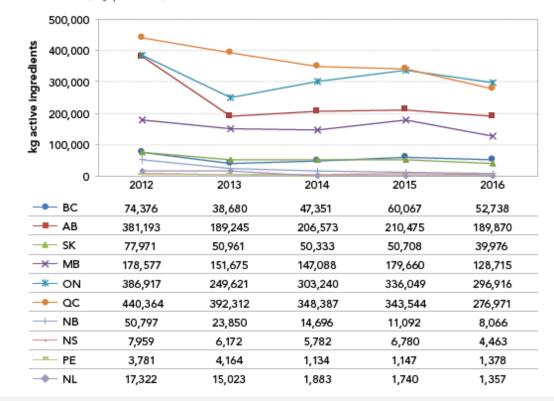


CANADIAN ANTIMICROBIAL RESISTANCE SURVEILLANCE SYSTEM

2017 REPORT

CHANGING RESISTANCE?

FIGURE 38: Resistance to selected antimicrobials among Salmonella isolates from chicken meat samples collected at retail stores, 2006-2016



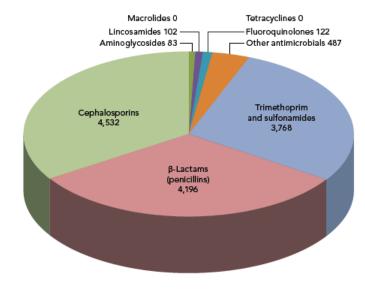
CANADIAN ANTIMICROBIAL RESISTANCE SURVEILLANCE SYSTEM

2017 REPORT Public Health Agence de la santé publicaue du Canada

ANTIMICROBIAL USE ANIMALS

FIGURE 51: Quantity of medically important antimicrobials (kilograms) distributed for sale for use in animals, by province, 2012-2016

CANADIAN ANTIMICROBIAL RESISTANCE SURVEILLANCE SYSTEM 2017 REPORT


Public Health Agence de la santé Agency of Canada publique du Canada

ANTIMICROBIAL USE COMPANION ANIMALS

Antimicrobial use in companion animals

In 2016, the predominant classes of antimicrobials used in companion animals were cephalosporins, β-lactams, and trimethoprim-sulfas (Figure 54). All three of these classes are antimicrobials of high importance to humans according to the classification system of the Veterinary Drugs Directorate, Health Canada¹⁵.

FIGURE 54: Relative quantities of antimicrobial classes distributed for use in companion animals (percentages based on kg active ingredient), 2016.

NOTE: Data Sources: Canadian Animal Health Institute. Antimicrobial sales were assigned to animal type according to label daim and in the situation where mixed species was indicated on the label, the manufacturer assigned the kg to either "Companion animal" or "Production animal". Values do not include antimicrobials imported under the "own use" provision or imported as active pharmaceutcal ingredients used in compounding. "Other antimicrobials" for 2016 Included: avilamycin, bacitracins, bambermycin, chloramphenicol, chlorhexidine gluconate, florfenicol, fusicic acid, nitarsone, nitrofurantoh, nitrofurazone, novoblocin, polymkin, tiamulin, and virginiamycin. CANADIAN ANTIMICROBIAL RESISTANCE SURVEILLANCE SYSTEM

Public Health Agence de la santé Agency of Canada publique du Canada

2017 REPORT

ANTIMICROBIAL USE COMPANION ANIMALS

- Large study out of UK
 - 216 practices
 - Included data from >400,000 dogs and >200,000 cats
 - Beta-lactams most commonly used
 - Amox + clav in dogs
 - 3rd Generation cephalosporins in cats

Original article

Patterns of antimicrobial agent prescription in a sentinel population of canine and feline veterinary practices in the United Kingdom

D.A. Singleton^{a,*,1}, F. Sánchez-Vizcaíno^{a,b}, S. Dawson^c, P.H. Jones^a, P.J.M. Noble^c, G.L. Pinchbeck^a, N.J. Williams^a, A.D. Radford^a

HOW CANADA'S AMU COMPARES

FIGURE 57: J01 Antimicrobial consumption (DDDs per 1,000 inhabitant-days), Canada (CA) and Europe (EU)

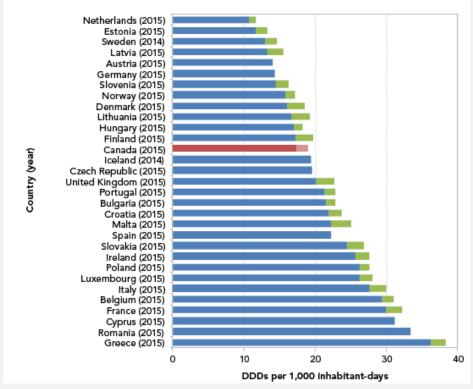
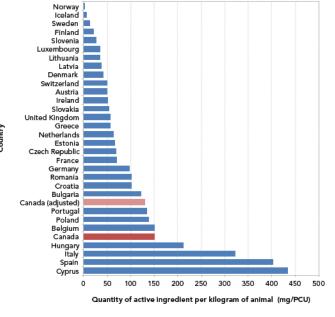



FIGURE 58: Sales of antimicrobials (adjusted by populations and weights) for Canada (2016) and countries participating in the European Surveillance of Veterinary Antimicrobial Consumption (2015)

NOTE: Data sources: Canadian Animal Health Institute, Statistics Canada, Agriculture and Agri-Food Canada, Equine Canada, European Surveillance of Veterinary Antimicrobial Consumption (ESVAC), PCU – population correction unit. The Canadian data used for live horses were from 2010 and fish from 2015; more recent data were unavailable. For the Canadian data, values do not include antimicrobials imported under the 'own use' provision or Imported as active pharmaceutical ingredients used in compounding. The PCU denominator was harmonized to the greatest extent possible with ESVAC⁹⁷. ESVAC denominator does not include ante yn everation anter a significant population, and are included. The ESVAC deproach excludes companion animal data.

CANADIAN ANTIMICROBIAL RESISTANCE SURVEILLANCE SYSTEM 2017 REPORT

Public Health Agence de la santé Agency of Canada publique du Canada

"The term "antimicrobial stewardship" is used to describe the multifaceted and dynamic approaches required to sustain the clinical efficacy of antimicrobials by optimizing drug use, choice, dosing, duration, and route of administration, while minimizing the emergence of resistance and other adverse effects."

Antimicrobial Stewardship in Small Animal Veterinary Practice: From Theory to Practice

Luca Guardabassi, DVM, PhD^{a, *}, John F. Prescott, VetMB, DVM, PhD^b Vet Clin Small Anim 45 (2015) 361–376 http://dx.doi.org/10.1016/j.cvsm.2014.11.005 0195-5616/15/\$ – see front matter © 2015 Elsevier Inc. All rights reserved.

"...a coherent set of actions which promote using antimicrobials responsibly... translated into context-specific and time-specific actions."

Review

What is antimicrobial stewardship?

O.J. Dyar ^{1, *}, B. Huttner ², J. Schouten ³, C. Pulcini ⁴, on behalf of ESGAP (ESCMID Study Group for Antimicrobial stewardshiP)

- Active stewardship changing behaviors
- Greatest impact on antimicrobial use
 - Specialist consultation on patient management (ID specialists, pharmacists)
 - Laboratory reports
 - Nudging
 - Suppressing
 - Framing
 - Active monitoring of antimicrobial usage (at an institutional level)
 - Audit and feedback

PROMOTE ANTIBIOTIC BEST PRACTICES— A FIRST STEP IN ANTIBIOTIC STEWARDSHIP

COSTS

ENSURE ALL ORDERS HAVE DOSE, DURATION, AND INDICATIONS
 GET CULTURES BEFORE STARTING ANTIBIOTICS
 TAKE AN "ANTIBIOTIC TIMEOUT" REASSESSING ANTIBIOTICS
 AFTER 48–72 HOURS

ANTIBIOTIC STEWARDSHIP PROGRAMS ARE A "WIN-WIN" FOR ALL INVOLVED

A UNIVERSITY OF MARYLAND STUDY SHOWED ONE ANTIBIOTIC STEWARDSHIP PROGRAM SAVED A TOTAL OF \$17 MILLION OVER EIGHT YEARS

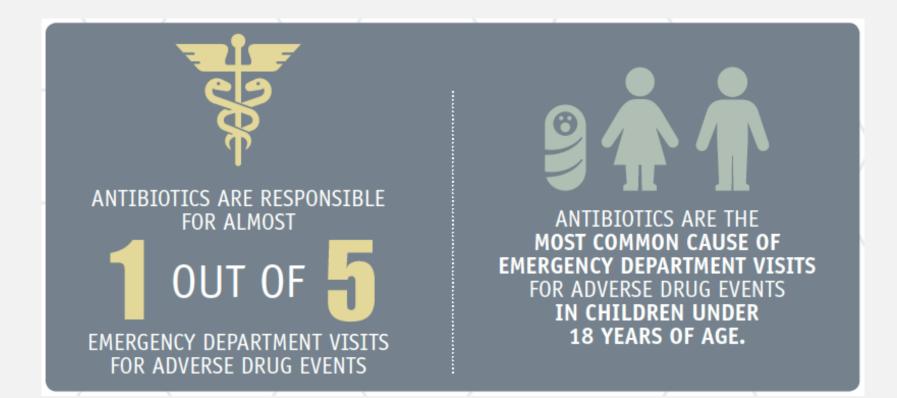
ANTIBIOTIC STEWARDSHIP HELPS IMPROVE PATIENT CARE AND SHORTEN HOSPTIAL STAYS, THUS BENEFITING PATIENTS AS WELL AS HOSPITALS

- Passive stewardship providing knowledge
- Less effective
 - Prudent use guidelines
 - Educational opportunities (CE like today!)

International Society for Companion Animal Infectious Diseases (ISCAID) guidelines for the diagnosis and management of bacterial urinary tract infections in dogs and cats Check for updates

J. Scott Weese^{a,*}, Joseph Blondeau^{b,c}, Dawn Boothe^d, Luca G. Guardabassi^{e,f}, Nigel Gumley^g, Mark Papich^h, Lisbeth Rem Jessenⁱ, Michael Lappin^j, Shelley Rankin^k, Jodi L. Westropp^l, Jane Sykes^l

CVMA GUIDELINES FOR VETERINARY ANTIMICROBIAL USE



CVMA Guidelines for Veterinary Antimicrobial Use

Veterinary oversight is the entire process or mechanism whereby veterinarians provide guidance or direction for appropriate use of antimicrobials.

ACCESS

PROXIMATE RISKS OF ANTIMICROBIALS ADVERSE DRUG EVENTS

ADVERSE DRUG EVENTS

- 20% of hospitalized patients given antimicrobials had ADE
 - 19% of ADE occurred in patients not needing antimicrobials

JAMA Internal Medicine | Original Investigation

Association of Adverse Events With Antibiotic Use in Hospitalized Patients

Pranita D. Tamma, MD, MHS; Edina Avdic, PharmD, MBA; David X. Li, BS; Kathryn Dzintars, PharmD; Sara E. Cosgrove, MD, MS *JAMA Intern Med*. 2017;177(9):1308-1315. doi:10.1001/jamainternmed.2017.1938 Published online June 12, 2017.

ADVERSE DRUG EVENTS

"... ADEs are common among inpatients receiving antibiotics, some of which may be avoidable with more judicious use of antibiotics."

"...antibiotic-associated ADEs may not be recognized by clinicians because ADEs have varied manifestations..."

JAMA Internal Medicine | Original Investigation

Association of Adverse Events With Antibiotic Use in Hospitalized Patients

Pranita D. Tamma, MD, MHS; Edina Avdic, PharmD, MBA; David X. Li, BS; Kathryn Dzintars, PharmD; Sara E. Cosgrove, MD, MS JAMA Intern Med. 2017;177(9):1308-1315. doi:10.1001/jamainternmed.2017.1938 Published online June 12, 2017.

ADVERSE DRUG EVENTS

 >140,000 annual emergency department visits in the United States for antibiotic associated ADE

Although the risk of an ED visit for an antibiotic-associated adverse event is small for an individual patient, when antibiotics are commonly prescribed for indications for which they have no benefit, the burden of preventable adverse events in the population is great.

> Emergency Department Visits for Antibiotic-Associated Adverse Events

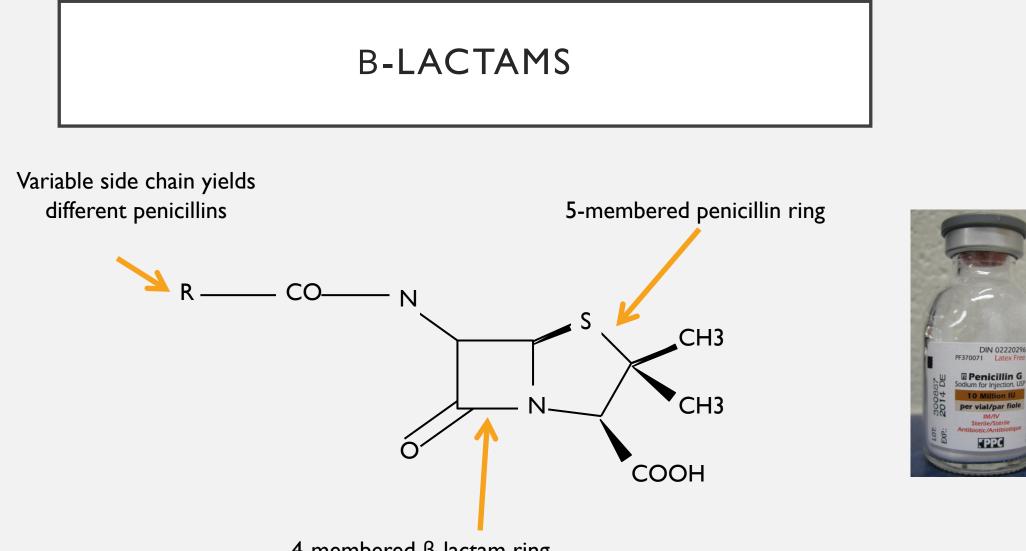
Nadine Shehab, Priti R. Patel, Arjun Srinivasan, and Daniel S. Budnitz

Division of Healthcare Quality Promotion, National Center for Detection, Preparedness, and Control of Infectious Diseases, Coordinating Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia

WHAT STEWARDSHIP MEANS TO ME:

- I. Thinking
- 2. Utilizing your knowledge of:
 - Drug mechanisms of action (spectrum of activity)
 - Mechanisms of resistance
 - Intrinsic resistance
- 3. Using a diagnostic lab, asking questions when you need more information
- 4. Being nimble and adapting to emerging resistance
- 5. Lifelong learning

MECHANISMS OF ACTION


- Cell Wall
 - β-lactams
- Protein Synthesis
 - Tetracyclines, macrolides (MLSBK), aminoglycosides, chloramphenicol
- DNA Metabolism
 - Fluoroquinolones, metronidazole,
- Anti-metabolites
 - Folate synthesis inhibitors (sulfas)

B-LACTAMS

- Inhibit cell wall synthesis
 - Bind to penicillin binding proteins
 - Prevent final stage of peptidoglycan synthesis
- Bacteriocidal
- Super family of antimicrobials
 - Penicillins
 - Cephalosporins
 - Carbapenems
 - β-lactamase inhibitors (clavulanic acid, sulbactam)

4-membered β -lactam ring

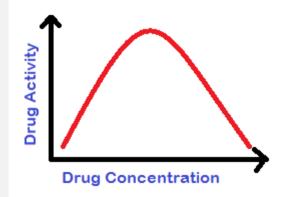
B-LACTAMS PENICILLINS

Group	Examples	Antimicrobial Spectrum
Benzyl penicillins	penicillin G	Gm +
Orally absorbed benzyl penicillins	penicillin V	Gm +
Anti-staphylococcal penicillins	cloxacillin, oxacillin	Staphylococci
Extended-spectrum penicillins	ampicillin, amoxicillin	Gm + and -, but not β- lactamase stable
Anti-pseudomonal penicillins	piperacillin	Gm – (less Gm +)
β -lactamase resistant penicillins	temocillin	

B-LACTAMS CEPHALOSPORINS

Generation	Examples	Antimicrobial Spectrum
st	cephalothin, cefazolin, cephalexin	Staphylococci, susceptible Enterobacteriaceae
2 nd	cefuroxime	Enterobacteriaceae, anaerobes
3 rd	cefevocin, ceftiofur, cefpodoxime, ceftriaxone	β-lactamase producing Enterobacteriaceae
4 th	cefepime, cefpirome	Gram negatives, non-fermenters

TETRACYCLINES


- Protein synthesis inhibitors
 - Bind to the 30S ribosomal subunit
 - Bacteriostatic
- Oxytetracycline, doxycycline, minocycline
 - Increasing lipophilicity
- Broad spectrum
 - Gram positives and negatives, intracellular parasites Rickettsia, Ehrlichia
 - When you think 'weird' organisms, think tetracyclines!

FLUOROQUINOLONES

The "Goldilocks" Zone

- Interfere with DNA metabolism
 - Gyrases and topoisomerases which supercoil DNA
- Concentration dependent
 - Biphasic (less active at very low and very high concentrations)
- Naladixic acid limited spectrum (Gram negative)
- Ciprofloxacin/enrofloxacin broad spectrum (Gram positive and negative, intracellular pathogens)

AMINOGLYCOSIDES

- Protein synthesis inhibitors +
 - Also effects: electron transport chain, DNA metabolism, cell membrane structure
- Concentration dependent
- Some of the best anti-Gram negative drugs
 - Enterobacteriaceae, P. aeruginosa
- Anti-staphylococcal activity (important for MRSP)
- NO anaerobic activity oxygen dependent uptake of drug by cell

$\mathsf{MLS}_\mathsf{B}\mathsf{K}$

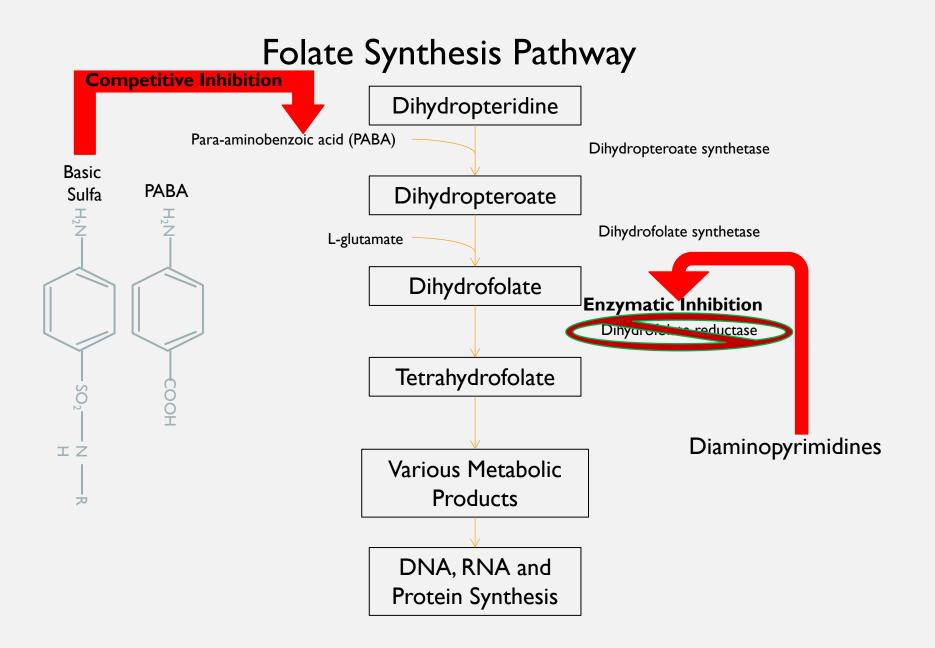
- Super-family of antimicrobials
 - Macrolides, lincosamides, streptogramins and ketolides
- Protein synthesis inhibitors
- Bacteriostatic
- Good activity against Gram positives, some Gram negatives well (*Brucella*, *Campylobacter* spp.,) and anaerobes.
- Generally poor activity against Enterobacteriaceae and non-fermenters (*P. aeruginosa*).

MLS_BK

Class	Examples	Spectrum of Activity
Macrolides	Erythromycin, tylosin	Gm +, some Gm – (Haemophilus, Moraxella, Pasteurella spp., and Bordatella spp. The 'odd ones' Legionella pneumophila, Chlamydophila psittaci, Leptospira, Treponema pallidum, Mycoplasma. Anaerobes – better against Gm + anaerobes than Gm - anaerobes
Lincosamides	Clindamycin, lincomycin	Gm +, anaerobes and the "odd ones" – see macrolides
Streptogramin B	Virginiamycin, quniupristin- dalfopristin	Gm + cocci and bacilli, Gm –ve cocci, Moraxella, Bordatella, intracellular organisms (Chlamydia, Rickettsia, Mycobacterium tuberculosis), anaerobes
Ketolides	Telithromycin, clarithromycin	Encompasses the spectrum of the macrolides and has better Gram + coverage.
Azalides	Azithromycin	Similar spectrum of activity as the macrolides but with better Gram negative activity.

CHLORAMPHENICOL

- Banned in food animals!
- Idiosyncratic aplastic anemia associated in people
 - Rare (1-20,000-40,000)
- Protein synthesis inhibitor
 - Bacteriostatic
- Broad spectrum of activity
 - Gram positives and negatives
- Florfenicol is a veterinary drug related to chloramphenicol
 - Not associated with aplastic anemia


METRONIDAZOLE

- Banned in food animals!
 - Carcinogenic
- Damage DNA and interfere with repair mechanisms
 - Bacteriocidal
- Active against anaerobic bacteria
 - Gram positive and negative bacteria
 - Protozoans (Tritrichomonas foetus, Giardia)
- Drug that we don't know tons about vis-a-vis resistance
 - Avoid the temptation of "dog with diarrhea = metronidazole"

FOLATE SYNTHESIS INHIBITORS

- Sulfonamides and diaminopyrimidines (trimethoprim)
- Bacteriostatic
- Broad spectrum
 - Gram positive and negative
 - Protozoans and Toxoplasma

GENERAL MECHANISMS OF RESISTANCE

- I. Decreased permeability
- 2. Increased efflux
- 3. Enzymatic alteration of drug
- 4. Target modification
- 5. Alternate metabolic pathways

WHERE DOES RESISTANCE COME FROM?

- Natural phenomenon!
 - Soil organisms survive in an environment that contains antimicrobial compounds
 - Enteric organisms need to survive in the presence of bile acids

LETTER

doi:10.1038/nature10388

Antibiotic resistance is ancient

Vanessa M. D'Costa^{1,2}*, Christine E. King^{3,4}*, Lindsay Kalan^{1,2}, Mariya Morar^{1,2}, Wilson W. L. Sung⁴, Carsten Schwarz³, Duane Froese⁵, Grant Zazula⁶, Fabrice Calmels⁵, Regis Debruyne⁷, G. Brian Golding⁴, Hendrik N. Poinar^{1,3,4} & Gerard D. Wright^{1,2}

Here we report targeted metagenomic analyses of rigorously authenticated ancient DNA from 30,000-year-old Beringian permafrost sediments and the identification of a highly diverse collection of genes encoding resistance to β -lactam, tetracycline and glycopeptide antibiotics.

- Resistance to every drug that has, is or will be used in the future already exists
 - Drug resistance is often a byproduct of something else
- ANY/ALL drug use (appropriate or inappropriate) results in selection pressure
 - If you use a drug it better be worth it!

WORDS OF WISDOM FOR NEW TOOLS

"It is a neck-and-neck race in which many of us tend to underestimate the opponent. Staphylococci will not be defeated by the haphazard use of each new antibiotic. As new antibacterial agents are discovered, let us use them with discrimination."

Dr. Mary Barber - 1955

THE EVOLUTIONARY POWER OF BACTERIA

	Human Generations in our History as a Species	Bacterial Generations in the History of Antimicrobials
Time	2 Million Years	78 years
Generation		
Length	25 years	20 minutes
Generations	80,000	2,049,840
in Period		

BASIC DEFINITION – WHAT IS RESISTANCE?


- Resistance can be sub-divided into intrinsic and acquired
- Intrinsic resistance is constitutive for an organism
 - Natural "superbugs", it's just part of what they are

Pseudomonas aeruginosa

BASIC DEFINITION – WHAT IS RESISTANCE?

- Resistance can be sub-divided into intrinsic and acquired
- Intrinsic resistance is constitutive for an organism
- Acquired resistance is not inherent to the organism, these bugs have something that makes them "super"

MECHANISMS OF RESISTANCE

- How do bacteria acquire resistance "genes"?
 - Mutation single nucleotide polymorphisms
 - Conjugation exchange between bacteria (mobile genetic elements)
 - Transduction phages
 - Transformation acquisition of exogenous DNA

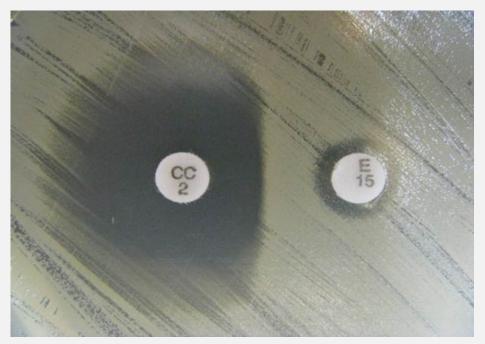
MECHANISMS OF RESISTANCE B-LACTAMS

- Enzymatic inactivation
 - Primary mechanism of resistance among Enterobacteriaceae
 - β-lactamases
 - Great diversity of enzymes
- Altered binding sites
 - Streps, enterococci, methicillin-resistant Staph

MECHANISMS OF RESISTANCE TETRACYCLINES

- Efflux
 - Common in Gram positive and negative
 - Resistance not necessarily across class...
 - If you want to use a drug test it!
- Ribosomal protection
 - Very common
 - S. pseudintermedius (tetM)
 - Conformational change in tetracycline binding site on 30S subunit of ribosome
- Ribosomal mutations, enzymatic inactivation also occur

MECHANISMS OF RESISTANCE FLUOROQUINOLONES


- Target mutations (Gram positive and negative)
 - gyrA and parC particularly
 - Step-wise resistance (MIC creep)
- Efflux
 - Multidrug resistance
- Plasmid mediated
 - *qnr* (target protection)
 - *qep* (efflux)
 - *aac6-lb-cr* (enzymatic inactivation cross resistance with aminoglycosides)

MECHANISMS OF RESISTANCE AMINOGLYCOSIDES

- Enzymatic inactivation
 - Aminoglycoside modifying enzymes
 - Most common mechanism of resistance
- Decreased permeability
 - Cross resistance to other antimicrobials

MECHANISMS OF RESISTANCE MLS_BK

- Target Modification
 - Ribosomal methylases
 - erm gene family
 - Be aware of inducible resistance
- Active Efflux
- Enzymatic Inactivation

Inducible clindamycin resistance in S. aureus Detection requires specialized laboratory tests

MECHANISMS OF RESISTANCE FOLATE SYNTHESIS INHIBITORS

- Altered enzymes
 - *dfr* genes (trimethoprim resistance)
 - Gram positive and negative
 - *sul* genes (sulfa resistance)
 - Gram negative bacteria
 - Often found in multi-resistant bacteria, linkage to other resistance genes
- Hyper-production of PABA

INTRINSIC RESISTANCE

- A good grasp of normal allows lab data to be interpreted
 - What do all of those "R's" really mean?
- Intrinsic resistance is independent of antibiotic exposure
- "Wild-type" phenotype
- Mycoplasma spp. intrinsically resistant to penicillin
 - They lack a cell wall and therefore don't have the drug target

INTRINSIC RESISTANCE ENTEROBACTERIACEAE

- ALL Enterobacteriaceae intrinsically resistant to:
 - Benzylpenicillin (original penicillin)
 - Macrolides
 - Lincosamides (clindamycin)
- SPICE organisms:
 - Serratia, Providencia, Proteus vulgaris (indole positive), Citrobacter and Enterobacter
 - Resistant to many β-lactams including clavamox

Table 1. Intrinsic resistance in Enterobacteriaceae. Enterobacteriaceae are also intrinsically resistant to benzylpenicillin, glycopeptides, fusidic acid, macrolides (with some exceptions¹), lincosamides, streptogramins, rifampicin, daptomycin and linezolid.

Rule no.	Organisms	Ampicillin	Amoxicilin- Clavulanic acid	Ampicillin-sulbactam	Ticarcillin	Cefazolin, Cefalotin Cefalexin, Cefadroxil	Cefoxitin ²	Cefuroxime	Tetracyclines	Tigecycline	Polymyxin B, Colistin	Nitrofurantoin
1.1	Citrobacter koseri, Citrobacter amalonaticus ³	R			R							
1.2	Citrobacter freundii ⁴	R	R	R		R	R					
1.3	Enterobacter cloacae complex	R	R	R		R	R					
1.4	Enterobacter aerogenes	R	R	R		R	R					
1.5	Escherichia hermannii	R			R							
1.6	Hafnia alvei	R	R	R		R	R					
1.7	Klebsiella pneumoniae	R			R							
1.8	Klebsiella oxytoca	R			R							
1.9	Morganella morganii	R	R	R		R			R		R	R
1.10	Proteus mirabilis								R	R	R	R
1.11	Proteus penneri	R				R		R	R	R	R	R
1.12	Proteus vulgaris	R				R		R	R	R	R	R
1.13	Providencia rettgeri	R	R	R		R		R	R	R	R	R
1.14	Providencia stuartii	R	R	R		R		R	R	R	R	R
1.15	Raoultella spp.	R			R							
1.16	Serratia marcescens	R	R	R		R	R	R	R ⁵		R	R
1.17	Yersinia enterocolitica	R	R	R	R	R	R					
1.18	Yersinia pseudotuberculosis										R	

¹ Azithromycin is effective *in vivo* for the treatment of typhoid fever and erythromycin may be used to treat travellers' diarrhoea.

INTRINSIC RESISTANCE NON-FERMERTERS

Table 2. Intrinsic resistance in non-fermentative Gram-negative bacteria. Non-fermentative Gram-negative bacteria are also generally intrinsically resistant to benzylpenicillin, first and second generation cephalosporins, glycopeptides, fusidic acid, macrolides, lincosamides, streptogramins, rifampicin, daptomycin and linezolid

Rule no.	Organisms	Ampicillin	Amoxicillin-Clavulanic acid	Ampicillin-sulbactam	Ticarcillin	Ticarcillin-clavulanic acid	Piperacillin	Piperacillin-tazobactam	Cefazolin, Cefalothin Cefalexin, Cefadroxil	Cefotaxime	Ceftriaxone	Ceftazidime	Cefepime	Aztreonam	Ertapenem	lmipenem	Meropenem	Ciprofloxacin	Chloramphenicol	Aminoglycosides	Trimethoprim	Fosfomycin	Tetracyclines	Tigecycline	Polymyxin B/Colistin
2.1	Acinetobacter baumannii, Acinetobacter pittii, Acinetobacter nosocomialis and Acinetobacter calcoaceticus complex	R	R	Note ¹					R	R	R			R	R						R	R	R ²	Note ²	
2.2	Achromobacter xylosoxydans	R							R	R	R				R										
2.3	<i>Burkholderia cepacia</i> complex ³	R	R	R	R	R	R	R	R	R	R			R	R			R	R	R ⁴	R	R			R
2.4	Elizabethkingia meningoseptica	R	R	R	R	R	R		R	R	R	R	R	R	R	R	R								R
2.5	Ochrobactrum anthropi	R	R	R	R	R	R	R	R	R	R	R	R	R	R										
2.6	Pseudomonas aeruginosa	R	R	R					R	R	R				R				R	Note ⁵	R		R	R	
2.7	Stenotrophomonas maltophilia	R	R	R	R		R	R	R	R	R			R	R	R	R			R⁴	R ⁶	R	R ⁷		

INTRINSIC RESISTANCE **GRAM-POSITIVES**

- Enterococci intrinsically resistant to many drugs
- Accurate speciation is important
 - E. faecalis intrinsically clindamycin resistant
 - E. faecium NOT intrinsically clindamycin resistant
- Enterococcus spp. don't tend to produce β -lactamases, amoxicillin + clavulanic acid does not offer advantage over amoxicillin

Table 4. Intrinsic resistance in Gram-positive bacteria. Gram-positive bacteria are also intrinsically resistant to aztreonam, temocillin, polymyxin B/colistin and nalidixic acid

Rule no.	Organisms	Fusidic acid	Ceftazidime	Cephalosporins (except ceftazidime)	Aminoglycosides	Macrolides	Clindamycin	Quinupristin- dalfopristin	Vancomycin	Teicoplanin	Fosfomycin	Novobiocin	Sulfonamides
4.1	Staphylococcus saprophyticus	R	R								R	R	
4.2	Staphylococcus cohnii,		R									R	
4.3 Staphylococcus xylosus			R									R	
4.4	Other coagulase-penative staphylococci and		R								R		
4.5			R										
4.6	Streptococcus spp.	R	R		R^1								
4.7	Enterococcus faecalis	R	R	R	\mathbf{R}^{1}	R	R	R					R
4.8	Enterococcus gallinarum, Enterococcus casseliflavus	R	R	R	\mathbf{R}^{1}	R	R	R	R				R
4.9	Enterococcus faecium	R	R	R	R ^{1,2}	R							R
4.10	Corynebacterium spp.										R		
4.11	Listeria monocytogenes		R	R									
4.12	Leuconostoc spp., Pediococcus spp. Lactobacillus spp. (L. casei, L. casei var. rhamnosus)								R	R			
4.13									R	R			
4.14	Clostridium ramosum, Clostridium innocuum								R				

¹ Low-level resistance (LLR) to aminoglycosides. Combinations of aminoglycosides with cell wall inhibitors (penicillins and glycopeptides) are synergistic and bactericidal against isolates that are susceptible to cell wall inhibitors and do not display high-level resistance to aminoglycosides.

² In addition to LLR to aminoglycosides, Enterococcus faecium produces a chromosomal AAC(6')-I enzyme that is responsible for the loss of synergism between aminoglycosides (except gentamicin, amikacin and streptomycin) and penicillins or glycopeptides

METHICILLIN RESISTANCE

EMERGENCE OF METHICILLIN RESISTANCE

- MRSA first identified in people in 1961
- In 1990s spread into the community
- In people associated with
 - Higher mortality and health care costs
- In dogs, the similar negative healthcare outcomes not demonstrated
- In Saskatoon, methicillin resistance first recognized in mid to late 2000s
 - Canine MRSA first recognized in 2006
 - Canine MRSP first recognized in 2008

EMERGENCE OF METHICILLIN RESISTANCE

 Unfortunately little BC specific data – 2015 report found 12.9% MR among dermatological isolates including BC

Brief Communication Communication brève

Prevalence of methicillin-resistant staphylococci in canine pyoderma cases in primary care veterinary practices in Canada: A preliminary study

Daniel Joffe, Fiona Goulding, Ken Langelier, Gabor Magyar, Les McCurdy, Moe Milstein, Kia Nielsen, Stephanie Villemaire


WHAT IS METHICILLIN RESISTANCE?

- More than just resistance to methicillin!
- Resistance to **ALL** β-LACTAMS
- mecA (mec family) gene
 - Codes altered penicillin binding protein (PBP2a)
 - Decreased binding affinity β-lactams drugs
 - Resistance to penicillins, cephalosporins and carbapenems
 - β-lactamase inhibitors won't help!
- Frequently multidrug resistant

IDENTIFICATION OF METHICILLIN RESISTANCE

Test	S. aureus	S. pseudintermedius
mecA	Gold Standard	Gold Standard
PBP2a Latex Agglutination	+	+
Phenotypic	Cefoxitin or	ONLY Oxacillin
Resistance	Oxacillin	

PCR Amplification of mecA

Agglutination of PBP2a

Phenotypic β-lactam resistance

THE CURRENT STATE OF MRSP...

1986-2000 Clinical	(n=60)	2008 Colonized (n=153)	2014 Colonized (n=78)
Drug	% Resistant	% Resistant	% Resistant
Penicillin	7	40	73
Ampicillin	0	10	62
Oxacillin	0	0	9
Erythromycin	8	3	5
Clindamycin	13	3	5
Tetracycline	34	24	26
Trimethoprim/Sulfa	5	0	4
Gentamicin	0	0	I.
Chloramphenicol	0	0	3

THE CURRENT STATE OF MRSP...

- Survey of diagnostic isolates from PDS 2013-2015
 - Urinary and dermatological
- Overall dermatological isolates more resistant than urinary
 - 51 dermatological isolates, 6 MRSP (16%)
 - 50 urinary isolates, I MRSP (2%)
 - Macrolide and chloramphenicol resistance also more common among dermatological than urinary isolates

METHICILLIN RESISTANCE TAKE AWAYS

- I. MR = resistance to <u>ALL</u> β-lactam drugs
- 2. Because MR is <u>**NOT**</u> due to the production of β -lactamases, drugs like amoxicillin + clavulanic acid are <u>**NOT**</u> helpful
- 3. Susceptibility profiles of *Staphylococci* are changing, and laboratory guidance is **VERY** important for aiding therapeutic selection
- 4. MR doesn't just affect companion animals, watch out for these bugs in livestock:
 - Mastitis in cattle
 - Bumble foot in chickens
 - S. hyicus greasy pig disease or MRSA skin infection in pigs

ESBLS AND CARBAPENEMASES

WHAT ARE ESBLS AND CARBAPENEMASES?

- Gram-negative problem
- These broad spectrum β -lactamases are going to be the "Next Big Thing" in the veterinary AMR world
 - There is a lack of awareness of these enzymes in the profession
 - We know remarkably little about the incidence of distribution of these resistance mechanisms in animals
- Often transmissible between bacteria
- These β-lactamases are emerging unnoticed in animals!

B-LACTAMASE CLASSES

E	nzymes	Ambler	Examples	Spectrum of	Inhibitors
		Class		Resistance	
	ESBLs	Class A	TEM (other than parent enzymes TEM-1, 2 and 13),	Penicillins	Clavulanic acid
Evt	ended-spectrum β-		SHV (other than parent enzyme SHV-1), CTX-M	Cephalosporins	Tazobactam
	lactamases			Monobactams	Sulbactam
	AmpC	Class C	CMY, FOX, ACT, MOX, ACC, DHA	Penicillins	Cloxacillin
	Ашрс			Cephalosporins	Boronic acid
				Cephamycins	
				Monobactams	
	Metallo-β-	Class B	NDM, VIM, IMP	Penicillins	EDTA and other
es	•			Cephalosporins	metal chelators
ase	lactamases			Cephamycins	
Carbapenemases	(MBL)			Carbapenems	
ne	KPC type	Class A	КРС	Penicillins	Clavulanic acid
be				Cephalosporins	(weak inhibition)
ba				Cephamycins	Tazobactam
ar				Carbapenems	Boronic acid
U U	OXA type	Class D	OXA-48	Penicillins	NaCl
				Carbapenems	

IDENTIFICATION AND IMPLICATIONS OF B-LACTAMASES

- The first think you'll see is β-lactam resistance
 - Diagnostic labs not doing genotyping routinely
- Will most likely affect your practice dealing with Enterobacteriaceae

Resistance Genes	Resistance Seen	Treatment Guidance
Narrow spectrum	Pen + IGC	Potentiated Penicillin
ESBL	Pen + IGC + 3GC	Non β-lactam
AmpC (CMY)	Pen + IGC + 3GC + Amox/Clav + Cefoxitin	Non β-lactam
Carbapebemase	All β-lactams	Non β-lactam

Pen – penicillins (including amoxicillin and ampicillin), IGC – first generation cephalosporins, 3GC – 3rd generation cephalosporins

CARBAPENEMASES

- Carbapenems are one of our last lines of defense!
 - Broad spectrum drugs
- Capable of degrading the vast majority of β-lactams
- Variety of enzymes with carbapenem degrading activity
 - Metallo-β-lactamases (NDM,VIM and IMP)
 - KPC type
- Distinct epidemiological characteristics

OUR WORST NIGHTMARE

NEW DELHI METALLO-B-LACTAMASE

- NDM-I
- First reported in 2008
 - 59 year old, male Swedish patient
 - Diabetic, had suffered multiple strokes
 - Decubital ulcers, UTI with ESBL producing K. pneumoniae
 - Rectal swab screening revealed carbapenem resistant E. coli
 - Recent history of hospitalization in India

NEW DELHI METALLO-B-LACTAMASE

- Dissemination from India, other endemic foci
 - Has been found on every continent except Antarctica
- Association with travel to Indian sub-continent
 - Pleasure and medical tourism
- Widely disseminated in India
 - Water
- Found in livestock in China

Travel-Related Carbapenemase-Producing Gram-Negative Bacteria in Alberta, Canada: the First 3 Years

Gisele Peirano,^{a,b} Jasmine Ahmed-Bentley,^{e,f} Jeff Fuller,^{e,g} Joseph E. Rubin,^{a,b,d} Johann D. D. Pitout^{a,c}


Division of Microbiology, Calgary Laboratory Services,^a and Departments of Pathology and Laboratory Medicine^b and Microbiology, Immunology and Infectious Diseases,^c University of Calgary, Calgary, Alberta, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada^d; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada^e; DynaLIFE_{DX}, Edmonton, Alberta, Canada^g; Provincial Laboratory for Public Health, Edmonton, Alberta, Canada^g

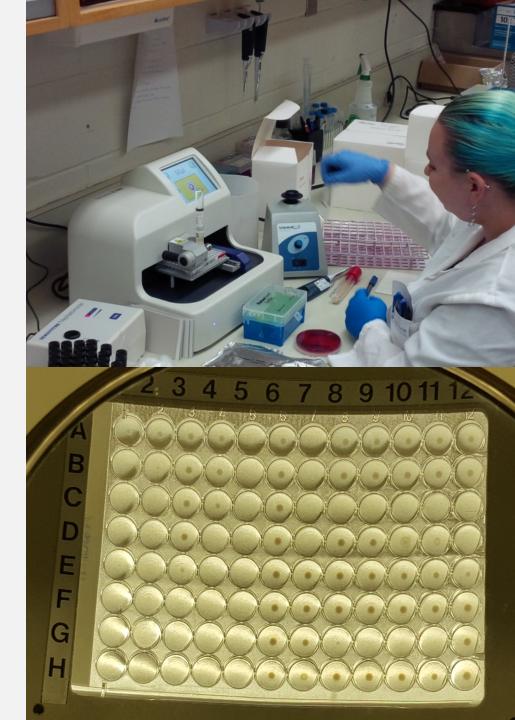
Journal of Clinical Microbiology p. 1575-1581

TRAVEL... MY FAVORITE ACTIVITY

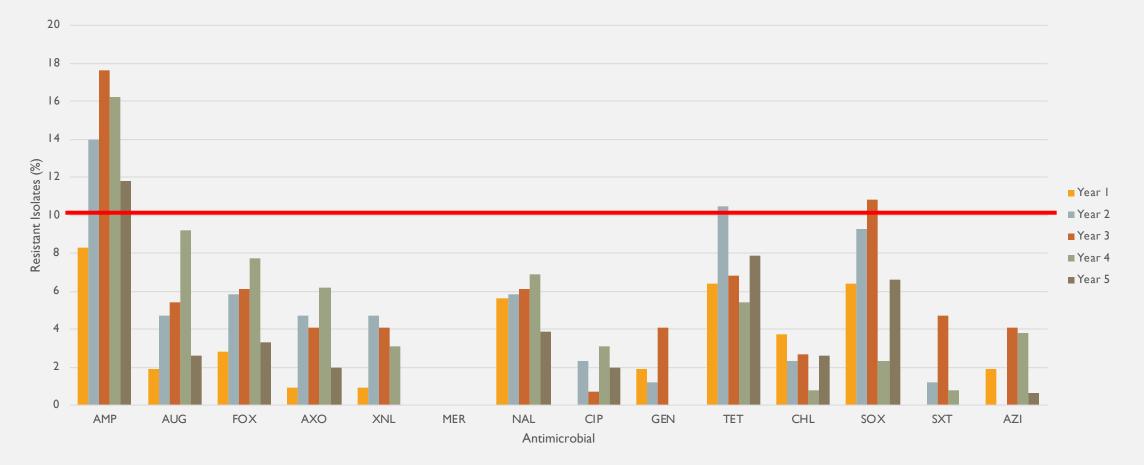
A swab before the trip...


.... and one on return

A little extra souvenir?


WHAT I PICKED UP...

- Before leaving, colonized with E. coli
 - Resistant to tetracycline
 - Susceptible to all beta-lactams, fluoroquinolones, aminoglycosides, sulfonamides
- On return, E. coli
 - Resistant to ampicillin, ceftriaxone and ciprofloxacin
 - Susceptible to cefoxitin, amoxicillin + clavulanic acid and all other drugs



HOW COMMON ARE THESE ENZYMES IN OUR PATIENTS?

- Collecting canine urinary *E. coli* isolates
 - Starting in 2013 and continuing
- 625 Samples collected in first 5 years
- MICs determined by broth micro-dilution
- β-lactamases detected by PCR

The frequency of antimicrobial resistance among canine urinary *E. coli* in Western Canada from October 2013-2018

Number of isolates (n=624) exhibiting resistance across five years of a canine *E. coli* resistance surveillance program. AMP- ampicillin, AUGamoxicillin + clavulanate, FOX- cefoxitin, AXO- ceftriaxone, XNL-ceftiofur, MER- meropenem, NAL- nalidixic acid, CIP- ciprofloxacin, GENgentamicin, TET- tetracycline, CHL- chloramphenicol SOX- sulfisoxazole, SXT- trimethoprim/sulfamethoxazole, and AZI- azithromycin

EMERGENCE OF ESBL PRODUCING E. COLI IN CANINE UTIS

Table 1: Prevalence (%) of phenotypic and genotypic resistance among canine urinary*E. coli* (n=625) during a five year surveillance period

	Pan-susceptible	MDR	СТХ-М	CMY-2
Year (n=108)	78.7 (85)	4.6 (5)	0 (0)	0.93 (1)
Year 2 (n=87)	80.5 (70)	6.9 (6)	1.1 (1)	2.3 (2)
Year 3 (n=148)	75 (111)	6.1 (9)	1.4 (2)	2.0 (3)
Year 4 (n=130)	80.8 (105)	4.6 (6)	1.5 (2)	2.7 (4)
Year 5 (n=152)	83.5 (127)	5.3 (8)	0.66 (1)	0.66 (1)

EMERGENCE OF ESBL PRODUCING E. COLI IN CANINE UTIS

Canine	Urinary	Sporadic cystitis	RECOMMENDED TREATMENT:	1.	Ber
			1. Amoxicillin: 11-15 mg/kg PO q12h	2.1	une
			2. Amoxicillin/clavulanic acid: 12.5-25 mg/kg PO q12h	3. II	ар
			3. Trimethoprim-sulfonamide (TMS): 15-30 mg/kg PO q12h	4. I	init
				5. I	cor
			Duration: 3-5d	6. I	
				7.1	
			ALTERNATIVE TREATMENT:	8. I	
			4. Enrofloxacin: 10-20 mg/kg PO q24h	9. II	
			5. Marbofloxacin: 2.7-5.5 mg/kg PO q24h	10. I	
			6. Orbifloxacin: 2.5-7.5 mg/kg PO q24h		
			7. Pradofloxacin: 3-5 mg/kg PO q24h		
			8. Cefpodoxime: 3-5 mg/kg PO q24h		
			9. Cephalexin: 3-5 mg/kg PO q24h		
			10. Cefovecin: 3-5 mg/kg PO q24h		

Benefit of amoxicillin/clavulanic acid over amoxicillin is unclear. NSAIDs should be considered to control cystitis, when appropriate for that patient (e.g. consider renal function). An initial course of NSAIDs without antimicrobials can be considered.

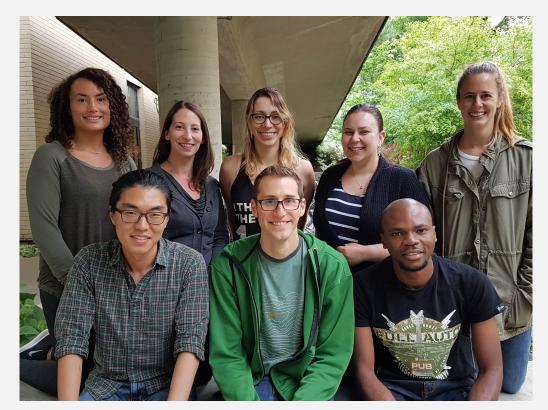
B-LACTAMASES TAKE AWAYS

- By-and-large canine UTIs can still be treated with 1st line therapies
- Broad spectrum β-lactamases are increasingly common in Gram-negatives
 - You're probably already dealing with them and don't even realize it!
 - Stay tuned, they're only going to become more common
- Multidrug resistance, and pan-resistance are still rare in veterinary contexts

SOMETIMES THINGS DON'T WORK AS EXPECTED...

Possible Reasons for Disagreement Between Test Results and Clinical Outcome

	Factor	Positive Outcomes	Negative Outcomes
	Pharmacokinetic	High urine drug concentrations	Failure of drugs to penetrate sequestered sites (ex. CNS)
			Drug interactions decreasing absorption or increasing elimination
Factors	Pharmacodynamic		Failure of aminoglycosides in acidic or anaerobic environments Failure of folate synthesis inhibitors in purulent environments
Se			(excessive PABA in environment)
Patient/Disease	Disease/pathology	No infection	Predisposing disease or underlying pathology such as atopy, diabetes
Ë		Self-limiting infection	or neoplasia
nt/			Indwelling medical device
tie	Therapeutic	Utilization of localized therapy, high	Off label use (dose, dosing frequency, route of administration)
Pa		concentrations overcoming low level	Poor owner compliance
		resistance	
		Off label use (dose, dosing frequency, route of	
		administration)	
ш	Resistance		Development of resistance in vivo
est	Organism lifestyle		Biofilm formation
L' si			Intracellular infections
anism/7 Factors	Organism	Mis-identified organism	Mis-identified organism
Fa	Identification	False positive culture	Mixed infection
Organism/Test Factors	Antimicrobial	Incorrectly performed or reported test	Incorrectly performed or reported test
	Susceptibility Test		Inducible resistance


TAKE HOME MESSAGES THE EASY AND OBVIOUS

- Antimicrobial resistance is increasing
 - The post-antibiotic era is on it's way
- Treat documented (or at least infections w/ evidence!)
- Next time you think "... just in case" your next thought should be "...but what if?"
- Optimize drug/dose to infection
- Familiarize yourself with relevant guidelines (CVMA, ISCAID, industry recommendations)
- Susceptibility profiles are highly variable, laboratory guidance is <u>VERY</u> important for aiding therapeutic selection

TAKE HOME MESSAGES THE HARDER ONES...

- Be aware of local susceptibility profiles
 - Use them to guide empiric therapy
- Don't forget about intrinsic resistance
- Reflect on outcomes
 - Did you 'cure' that animal?

QUESTIONS?

www.therubinlab.com